Butterfly effects in mimicry? Combining signal and taste can twist the relationship of Müllerian co-mimics
Behavioural Evology and Sociobiology, Vol. 62, No. 8, 1267-1276
Eira Ihalainen, Leena Lindström, Johanna Mappes and Sari Puolakkainen
Department of Biological and Environmental Science, FI-40014 University of Jyväskylä
Müllerian co-mimics are aposematic species that resemble each other; sharing a warning signal is thought to be mutually beneficial for the co-mimics by reducing per capita predation risk. In Batesian mimicry, edible mimics avoid predation by resembling an aposematic model species. The protection of both the model and the mimic is weakened when the mimics are abundant compared to the models. The quasi-Batesian view suggests that defended (Müllerian) co-mimics, when unequal in their defences, could also show a Batesian-like trend of increasing mortality with increasing abundance of a less defended “mimic”. We manipulated frequencies of unequally distasteful artificial co-mimics that were prey for great tits. The co-mimics had different signals (imperfect mimicry) but were equally preferred by the birds when palatable. Unexpectedly, when unpalatable, one of the signals was easier for the birds to learn to avoid. Consequently, during predator learning, the signal design of the prey strongly affected mortality of the co-mimics; there was an interaction between the signal and frequency treatments, but increasing the frequency of a less defended “mimic” did not increase co-mimic mortalities as predicted. In contrast, in a memory test that followed, the effect of signal design disappeared; if the birds had experienced high frequency of “mimics” during learning, co-mimic mortalities did subsequently increase. Since the effect of co-mimic frequencies on mortalities changed depending on the signal design of the prey and predator experience, the results suggest that mimetic relationship may be an unpredictable interplay of several factors in addition to taste and abundance.
Keywords: Aposematism - Quasi-Batesian mimicry - Predator psychology - Avoidance learning - Memory
Behavioural Evology and Sociobiology, Vol. 62, No. 8, 1267-1276
Eira Ihalainen, Leena Lindström, Johanna Mappes and Sari Puolakkainen
Department of Biological and Environmental Science, FI-40014 University of Jyväskylä
Müllerian co-mimics are aposematic species that resemble each other; sharing a warning signal is thought to be mutually beneficial for the co-mimics by reducing per capita predation risk. In Batesian mimicry, edible mimics avoid predation by resembling an aposematic model species. The protection of both the model and the mimic is weakened when the mimics are abundant compared to the models. The quasi-Batesian view suggests that defended (Müllerian) co-mimics, when unequal in their defences, could also show a Batesian-like trend of increasing mortality with increasing abundance of a less defended “mimic”. We manipulated frequencies of unequally distasteful artificial co-mimics that were prey for great tits. The co-mimics had different signals (imperfect mimicry) but were equally preferred by the birds when palatable. Unexpectedly, when unpalatable, one of the signals was easier for the birds to learn to avoid. Consequently, during predator learning, the signal design of the prey strongly affected mortality of the co-mimics; there was an interaction between the signal and frequency treatments, but increasing the frequency of a less defended “mimic” did not increase co-mimic mortalities as predicted. In contrast, in a memory test that followed, the effect of signal design disappeared; if the birds had experienced high frequency of “mimics” during learning, co-mimic mortalities did subsequently increase. Since the effect of co-mimic frequencies on mortalities changed depending on the signal design of the prey and predator experience, the results suggest that mimetic relationship may be an unpredictable interplay of several factors in addition to taste and abundance.
Keywords: Aposematism - Quasi-Batesian mimicry - Predator psychology - Avoidance learning - Memory